
Middleware Policiesfor Intrusion Tolerance:
A Position Statementfor WDMS ’02

FranklinWebber, ParthaPal, ChrisJones,MichaelAtighetchi,Paul Rubel
BBN Technologies

Workshop on DependableMiddlewar eSystems2002
(part of DependableSystemsand Networks Conference)

For many years,researchershave arguedthat redun-
dancy canbe usedto recover from computersystemfail-
ures,notonly thosefailuresthatarisefrom random“actsof
God” but thosecausedby maliciousandorchestratedacts
of Man aswell[2]. Somemiddlewarehasbeenbuilt to co-
ordinategroupsof componentreplicasin a way that toler-
atesarbitraryfailuresof a subsetof thereplicas[6][4]; then
if an attacker corruptsonly oneof thesesubsets,the sys-
tem will continuefunctioningcorrectly. Ongoingresearch
seeksto refinethis approachto intrusion tolerance, includ-
ing building thenext generationof dependablemiddleware
to supportit[5][1].

Our position is that successfulintrusion tolerancewill
dependonapolicy thatlinks replicacoordinationwith other
intrusioncountermeasuresandthatthispolicy shouldbeim-
plementedin middleware.Replicacoordinationby itself is
notsufficientbecause:

� Attackerswill try, andoftensucceed,in corruptingor
killing morereplicasthancanbe tolerated. A policy
for replacingcorruptor deadreplicasautomaticallyis
thereforeneededto increasethesystem’susefullife.

� Attackerswill try to kill many replicasat once,or cor-
ruptreplicassothateachbehavesnormallyatfirst, then
many fail simultaneously. A policy that usesother
mechanisms,intrusiondetectorsandfirewalls in par-
ticular, to quarantinethe attacker is thereforeneeded
to make thisandotherattacksharder.

The intrusion tolerancepolicy belongsin middlewarebe-
cause

� it is likely to bereusablefor many differentdistributed
applications,and

� it involvesadaptationandreconfigurationthatneedsto
becoordinatedacrossmultiplehosts.

Intrusion tolerancepolicies involve a trade-off: a sys-
temthatis quick to replacereplicasandto quarantinehosts
where suspiciousevents have happenedis a systemthat
may make itself especiallyvulnerableto denial-of-service

attacks.An attacker who learnsto triggerquarantining,for
example,maybeableto quarantinesomany hoststhat the
systemfails to provide enoughresourceseven for autho-
rizedapplications.On theotherhand,a systemthatis slow
to reactmaybetoo slow to countermany attacks.

We have definedseveralintrusiontolerancepoliciesand
implementedthem using the QuO adaptive middleware
toolkit[3]. Oneof thesepolicies is currentlybeingevalu-
atedin an adversarial“Red Team” experiment. Section1
describesthatpolicy. Section2 summarizesthe resultof a
RedTeamexperimentinvolving middlewareimplementing
thatpolicy. Finally, section3 lists someunansweredques-
tionsthatmayleadto furtherdiscussionat theWorkshop.

1 An ExamplePolicy for Intrusion Tolerance

This section describesa policy for defendinga dis-
tributedapplicationagainstintrusions. The policy coordi-
natesthefollowing mechanisms:

� replica management: support for detectingreplica
crashesandstartingnew replicas;

� packet filtering : firewalls,oneperhost,thatallow net-
work traffic to be blockedaccordingto rulesthat can
beestablishedandchangedat run-time;

� intrusion detection: detectorson every hostthatlook
for suspiciousnetwork traffic andimproperfile system
activity;

� accesscontrol: cryptographicsupport for detecting
andrejectingunauthorizedmodificationto application
executablesandto application-andmiddleware-level
communication.

Thepolicy hasthefollowing clauses:

1. Useaccesscontrolto ensurethateveryreplicagetsrun
from a legitimate executableand that all application
andmiddlewarecommunicationis valid.



2. Maintaintwo replicasof everyapplicationcomponent,
startinganew onewhenevernecessary, andcoordinate
the replicasto toleratea crashof either replica or a
network partitionthatmakesonereplicainaccessible.

3. If improperfile systemactivity is detectedon host
�

,
mark

�
as“suspect”.If shutting

�
down would leave

at leasthalf of theoriginalsetof hostsup, thenshut
�

down andblock all network traffic to andfrom
�

.

4. If suspiciousnetwork traffic is detectedfrom host
�

,
mark

�
as “suspect”. If

�
is not a host on which

applicationcomponentscanberun, block all network
traffic from

�
; otherwise,if shutting

�
down would

leave at leasthalf of the original setof hostsup, then
shut

�
down andblockall network traffic to andfrom

�
.

5. Whenstartinga new replica,placeit, if possible,on a
hostthatis not “suspect”.

This intrusiontolerancepolicy is completelyautomatic:
theresponseto anattackis completelycoordinatedby mid-
dleware,without any humanintervention. Automatingthe
policy meansthatevenavery fastattackmayfaceaneffec-
tive response.Slower attackswould allow time for human
intervention,possiblyresultingin a betterintrusion toler-
ance,but suchinterventionis not partof thepolicy.

Threeissuesaboutthis policy mustbenoted:

1. Arbitrary, i.e., Byzantine,corruptionof replicascan
causeanapplicationto fail. This policy maintainstoo
few replicasto toleratean arbitrary failure of oneof
them,andthereplicacoordinationdescribedin policy
clause2 toleratesonly crashfailures.However, thein-
tent of policy clause1 is to make it difficult for even
a privilegedattacker to corrupt a replica. Tolerating
only crashfailuresis adequate,therefore,to counter
mostattacks.

Weplanto useByzantinefault-tolerantprotocols[1] in
thefuture,andtheintrusiontolerancepolicy will need
to bemodifiedaccordingly.

2. Quarantiningahost,in policy clauses3 and4, involves
bothshuttingthathostdown andrefusingto talk to it.
Simply shuttingit down maynot besufficient because
aprivilegedattackeron thathostmaydisabletheshut-
down mechanismbeforeit canbeactivated.

3. The middleware must synchronizethe shutdown of
“suspect” hostsso that no more than half the hosts
will be shutdown unlessthe attacker hasactuallyin-
filtratedmorethanhalf of them(in which casetheat-
tackercouldshutthemdown himself).Policy clause4
allowsfor thepossibilitythattheattackermightsetoff

intrusiondetectorson many or all of the hostssimul-
taneously, without having gainedprivilegeson all the
hosts.In thatcase,themiddlewaremustchoosewhich
“suspect”hoststo shutdown andwhich to keep,and
thischoicemustbeconsistentacrossthenetwork. The
constraintthat no morethanhalf the hostsshouldbe
shutdown is an arbitrarylimit (e.g.,onethird or two
thirdsmight bechoseninstead)thatpreventsthemid-
dlewaredefensesfrom causingadenialof service.

Wehaveimplementedthispolicy in CORBA-basedmid-
dleware, entirely in Java. Our implementationruns on
Linux andusesIPTablesfor packet filtering andSnortand
Tripwire as intrusion detectors. Our accesscontrol and
replicamanagementarehome-grown, but the former uses
thecryptographiclibrariesavailablein Sun’sJava Cryptog-
raphyExtension(JCE).

2 ResultsFrom A RedTeamExperiment

An experimenthasbeenconductedto testtheeffective-
nessof our implementationof the policy describedin the
previoussection.This experimentconsistedof repeatedat-
tacksagainstour software by a professional“Red Team”
from SandiaNational Laboratory. This sectiondescribes
theresultof thatexperiment.

As a context for theexperiment,we implementeda sim-
ple videodisplayapplication,in which serversfeedimage
datato clients,andclientsperiodicallyselectan appropri-
ateserver usingan intermediate“broker” component.The
applicationis distributedover a network of 13 hostson 4
separateLANs. It is implementedentirely in Java anduses
CORBA.

Wedefendedthisapplicationusingtheintrusion-tolerant
middlewarepreviously described.The goal of the defense
was to ensurethat at leastone client continueto receive
video imagesfrom someserver for aslong aspossible.To
concentratetheattacker’sattentiononourdefenses,wepro-
tectedonly the broker componentand put the clients and
serversoff-limits for theattacker. (Clientsandserversmight
alsohave beenprotectedby our middleware,or they might
be fixed resourcesprotectedby someothermeans.)Thus
thebrokerwasreplicated,andbrokerreplicasmightbecre-
atedanywhereon thenetwork. The goalof theattackwas
to disablethebrokercomponent,thuspreventingany client
from locatingany server andthuspreventingthereceiptof
videoimages.

TheRedTeamwasgiven“root” privilegeononehoston
oneof the 4 LANs. The Red Teamthenspentroughly a
weekof effort repeatedlyattackingthesystembeforefind-
ing a way to defeatour defense.That attackmethodwas
thenautomated.Thecompletelyautomatedattacktakesap-
proximately5 minutesto defeatour defenseandimmedi-
atelysetsoff numerousalarms.



Weconsiderthisexperimentresultasuccessfor ourmid-
dlewaredefense.It shows:

� An unpreparedattacker, even with a lot of skill and
some“insider” privilege,wouldbeforcedto spendsig-
nificanteffort to find asuccessfulattack.

� A preparedattacker with some “insider” privilege
would likely be forced to spendminutes,ratherthan
seconds,to disableanapplication.

The successfulattack combined three separatetech-
niquesto defeatourdefense:

1. ARP cachepoisoningon the LAN on which the at-
tackerhasprivilege,to createanartificial network par-
tition andisolatereplicason thatLAN;

2. spoofedport scansthat seeminglycome from hosts
on theotherLANs, causingour defenseto shutdown
somehostson which replicasrun;

3. TCP connectionflooding to block the mechanismfor
startingnew replicas.

So thesuccessfulattackdisabledthebroker componentby
isolatingsomereplicas,causingthe defenseto kill others,
andpreventingnew onesfrom beingstarted.

A follow-on experimentis being prepared. This sec-
ondexperimentwill testimproveddefensesthatwouldhave
blockedtheattackthatsucceededin thefirst experiment.It
will also exercisesometechniquesthe Red Teamdid not
explorein thefirst experiment.In particular, theRedTeam
will try to causemaliciouscorruptionin at leastonereplica,
thuscircumventingclause1 of ourpolicy, andwewill mea-
surethedifficulty of doingthis.

3 Middlewar e Issues

Onekey issuethatremainsunresolvedin ourwork is the
valueof unpredictabilityfor defense.Doesa defensethat
choosesunpredictablybetweenalternativecountermeasures
to an attackmake the attacker work significantly harder?
For example,thepolicy in section1 might startnew repli-
cason randomly-chosenavailablehostsor it might always
choosethe availablehostwith thesmallestIP address.In-
tuitively it seemstheattacker mustwork at leastashardto
defeattheunpredictabledefense,but is theincreasein diffi-
culty significantin practice?

This issuecanbedirectly relatedto middlewarebecause
distributedmiddlewarecanbe a sourceof unpredictability
itself. Nondeterminismin a distributed computationcan
lead to unpredictablechoicesbetweenalternatives. Can
this nondeterminismbeharnessedto improve intrusiontol-
erance?

A second,relatedissueis diversity. Our approachto
intrusion tolerancedependson diversity to work: without
diversity, if all replicasrun the samecode, run on iden-
tical platforms,andrun in environmentsthat areadminis-
teredidentically, thenanattackthatkills onereplicashould
work to kill themall at once. With diversity, multiple im-
plementations,multipleplatforms,andheterogeneousenvi-
ronmentsshouldincreaseintrusiontolerance.

Clearly, middlewareis an importantway to managedi-
versity, allowing anapplicationto begivena consistentin-
trusiontolerancepolicy thatspansmultiple, heterogeneous
platforms. But how muchdiversity is necessaryfor intru-
siontolerance,anddoestheneedfor morediversityaddany
new middlewarerequirements?

A third issueis packagingintrusion tolerancepolicies,
suchasthe onein section1, for reuseacrossdifferentap-
plications.Clearly, encapsulatingthepolicy in middleware
helpsreuse. However, we have little experienceso far in
applyingthesamepolicy to radicallydifferentapplications.
Canthe policy be easilyparameterizedby relevant factors
such as the numberand kind of hosts, and the network
topology?

A fourth issuesofar unaddressedby our work is there-
lationshipbetweenreal-timeconstraintsand intrusion tol-
erance.The additionof real-timeconstraintsmay make a
distributedcomputationmorefragile andthuseasierfor an
attacker to disrupt. On the other hand,small disruptions
that result from an intrusionmay be moreeasilydetected
in a real-timesystemand thus may be counteredsooner.
Whetherreal-timeapplicationsareharderor easierto make
intrusion-tolerantis anopenquestion.

References

[1] Intrusion tolerance by unpredictable adaptation.
http://itua.bbn.com. BBN Technologiesand University
of Illinois.

[2] L. Lamport,R. Shostak,andM. Pease.TheByzantinegen-
eralsproblem. ACM Trans. Prog. Lang. Syst., 4(3):382–401,
1982.

[3] J. Loyall, R. Schantz,J. Zinky, andD. Bakken. Specifying
andmeasuringqualityof servicein distributedobjectsystems.
In IEEE Int’l Symp. Object-Oriented Real-Time Distributed
Comp., Apr. 1998.Kyoto,Japan.

[4] L. E. Moseretal. TheEternalsystem.In ACM Conf. Object-
Oriented Prog., Syst., Lang., and Applications, Oct.1997.

[5] D. Powell et al. MAFTIA (malicious-and accidental-fault
tolerancefor internetapplications.In Int’l Conf. Dependable
Syst. and Networks, July 2001.

[6] M. K. Reiter. Distributing trust with the Ramparttoolkit.
Commun. ACM, 39(4):71–74,Apr. 1996.


