
Formal Specificationof Fault Toleranceand its Relation to Computer Security

D.G. Weber

Odyssey ResearchAssociates,Inc.
301AHarrisB. DatesDrive

Ithaca,NY 14850-1313
6072772020

Abstract

Inter national Workshop on Software Specificationand Design1989
(ACM SIGSOFT Engineering Notes,Volume14,Number 3)

Thetechniquesof formalverificationareonemeansfor
gaining greater assuranceof the correctnessof software.
Thesetechniquesrequire precisespecificationof the prop-
ertiesto beassured. Thispaperformulatesprecisespecifi-
cationscorrespondingto the intuitive notionsof “fault tol-
erance” andof “gr acefuldegradation”. Ananalogyis con-
structedbetweenthesefault-tolerancespecificationsanda
particular classof specificationsfor computersecurity. On
the basisof this analogy, it is arguedthat formal verifica-
tion of fault tolerancewill facesomeof thesameproblems,
andbenefitfromsomeof thesamesolutions,asverification
of security.

1 Intr oduction

In thispaper, wewill beconcernedwith specificationand
verificationof fault-toleranceproperties.We will be seek-
ingaprecisedefinitionof theterm“f aulttolerance”andask-
ing whatstepsmustbetakento prove thata systemdesign
is in fact fault tolerantaccordingto thedefinition. We will
be only minimally concernedwith strategies,designs,and
algorithmsusedto implementfault-tolerantsystems,and
only thenasexamplesto show why a particulardefinition
of “f ault tolerance”is relevant.

Onepreviouseffort towardverifying fault tolerancecan

0Thisworkwassupportedby theAir ForceSystemsCommandatRome
Air DevelopmentCenterunderContractNo. F30602-86-C-0263.The
views andconclusionscontainedin this paperarethoseof theauthorsand
shouldnot be interpretedasnecessarilyrepresentingthe official policies,
eitherexpressedor implied,of theAir Forceor theU.S.Government.

0Permissionto copy without fee all or part of this materialis granted
providedthatthecopiesarenot madeor distributedfor directcommercial
advantage,the ACM copyright noticeandthe title of the publicationand
its dateappear, andnotice is given that copying is by permissionof the
Associationfor ComputingMachinery. To copy otherwise,or to republish,
requiresa feeand/orspecificpermission.

be found in theSIFT project(SoftwareImplementedFault
Tolerance)[11]. SIFT was an ultra-reliablefault-tolerant
computerdesignedfor aircraft flight control. A precise
modelof thissystemwasdeveloped,andconstraints(speci-
fications)onthemodelwhich impliedthecorrectnessof the
systemwere written down. However, the SIFT approach
differs from ours, in that the propertyof “f ault tolerance”
wasnever consideredin isolation,but wasalways implic-
itly subsumedin theothersystemspecifications.Onecould
notprove,or evenstate,thatSIFTwasfault tolerantwithout
additionallystatingandproving that it satisfiedmany other
correctnesspropertiesaswell. Weintendto find adefinition
of fault tolerancethatcanstandby itself.

The remainderof this section discussesfactors that
should be excluded from a formal specificationof com-
putersystemproperties.Section2 developsspecifications
for fault toleranceandgracefuldegradation.In section3 we
considerverificationof systemsagainstthesespecifications.
This entirepaperis condensedfrom [9]. A morecomplete
discussion,developmentof fault-toleranceproperties,and
examples,canbefoundthere.

1.1 Fault Scenariosand MTTF

A system’s fault toleranceis sometimesexpressedasa
meantime to failure (MTTF). One goal of a verification
methodologyfor fault-tolerantsystemsmight be to prove
that a system’s MTTF exceedssomevalue. However, the
MTTF is not just a propertyof a computersystem,but in-
volvesthe environmentof that systemaswell. A measure
of fault tolerancethat dependsonly on the systemdesign,
andnot on its environment,would bepreferable.

A fault scenario is a history of a system’s interaction
with its environment,andwhich includesnot only thesys-
tem’s inputs and outputsbut also a descriptionof faults,
including which componentsfailed, whenthey failed, and
how eachfailure is expectedto manifestitself in the fu-
ture. We supposethat a system’s environmentdetermines



thelikelihoodof eachfault scenario.
If we can now decide,for eachscenario,whetherthe

systemdesignwill fail, andat what time it fails, thenwe
can (in principle) calculatethe MTTF by averagingover
all the fault scenarios.This average,however, is usually
quite complicatedand involvesmany approximationsand
assumptionsabouttheenvironment.

Insteadof calculatingMTTF, we will considerverifica-
tion of fault toleranceto beproof thata systemdesignwill
not fail for agivenfaultscenarioor somesetof faultscenar-
ios. For example,onemight verify thatsystemfailuredoes
not happenin any fault scenarioin which at mostonefault
occurs.This meaningof “f ault tolerance”dependsonly on
thesystemdesign,andis independentof environmentalfac-
tors.

2 Formal Specificationof Fault Tolerance

2.1 SpecifyingFaults

Beforedefining“f ault tolerance”,it is first necessaryto
define“f ault”. Abstractly, asystemor systemcomponentis
faultywhenit nolongerperformsaccordingto its specifica-
tion.

Theliteratureof fault toleranceidentifiesvarious“spec-
ifications” for componentsafterthey have failed. Thesein-
cludeByzantine(a failed componentexhibits arbitrarybe-
havior), fail-stop(a failed componenthaltsand its failure
canbedetected),andothers.

2.2 Non-Interfer ence

Thesimplestway to define“f ault tolerance”is converse
to our previous definition of “f ault”: a systemis fault tol-
erantif it performsaccordingto its specification.Thus,it
mustbehave asthoughit werenon-faulty, evenin thepres-
enceof faulty behavior of its components.

Denoteby
�

the setof fault scenariosunderwhich no
faultsoccur. Let � bea setof fault scenariosunderwhich
we desirefault tolerance;no lossof generalitywill result
if we requirethat

��� � . Supposethat � is a system
designthatexhibits thebehavior desired,andthat ����� is
a fault-tolerantversionof � . Therearenow threemethods
by whichwemayshow that ����� is fault tolerantunderthe
givensetof fault scenarios,� :

1. We mayshow that thebehavior of � , underscenarios�
, is identicalto thebehavior of ����� under� .

2. We may characterizethe behavior of � under
�

by
somespecification,	 . Thenwe mayshow that �����
implements	 under � .

3. We may show that the behavior of ����� under
�

is
equivalentto thebehavior of ����� under � .

Thefirst of thesemethodsis usuallyimpractical.We would
needto constructtwo separateversionsof onesystem.

Thesecondmethodis theoneusedin theSIFT project.
The specification	 describesthe correctbehavior both of
� andof ����� . We would thenrequiresimply that ���
�
behavecorrectly.

The third methodcapturesthe notion of fault tolerance
asa comparisonof behaviorswith andwithoutoccurrences
of faults.However, it doessowithout referringeitherto de-
sign � or to its specification	 . Therelevantaspectsof each
canbe derived from ����� alone. The behavior of ���
�
underscenarioswith no faultsshouldbe equivalentto be-
havior of � underthesamescenarios.Therefore,thethird
methodhasa clearadvantageover theothers:theproperty
of fault tolerancebecomesentirelyapropertyof thebehav-
ior of ����� , and doesnot involve extra correctnesscon-
straintsthat may be requiredby 	 . It is this third method
wewill proceedto develop.

Our statementof fault toleranceis now a relationon the
behavior of the systemunderdifferentsetsof fault scenar-
ios. Let the possiblewaysa systemmay interactwith its
environmentbe called“events”. Sequencesof eventswill
becalled“histories”,andahistorythatis possiblefor asys-
tem will be called a “trace” of that system. One way to
characterizea designis to give the setof its traces. This
is a simplificationof theapproachof CSP[2]. “Behavior”
will bedefinedby thesequenceof eventsof a tracethatare
visible to a system’susers.

Simplefault toleranceis then:allowing certainfaultsce-
nariosdoesnotchangethevisibleaspectsof thesetof traces
of a fault-tolerantsystem.We maysaythat theoccurrence
of fault eventsdoesnot interfere with a system’sbehavior.

2.2.1 Formal Definition

Let a systembe characterizedby a tuple ����������
� , where
� is thesetof possibleevents,� � � is thesetof possible
faultevents,and � is thesetof tracesof eventschosenfrom
� .

For any event sequence� andsetof events 	 , the no-
tation ����	 will denotethe sequencederived from � but
with all eventsnot in 	 removedandtheorderingof there-
mainingeventsretained.For any trace � , what wascalled
“behavior” above will now be denotedby the sequenceof
non-faultevents,��� � , where����������� � is thecomple-
mentof � with respectto � . Two setsof tracesexhibit the
samebehavior if, for any tracein one,thereis a tracein the
otherwhich hasthesamesequenceof eventsin � .

We characterizeeachfault scenarioas a sequenceof
events. Eachscenariois simply a history, whetheror not
it is a possiblehistoryfor a givensystem.



Wewill now formalizetheabovedefinitionof fault toler-
ancefor thesystem!"�#�����$���%�
� . Let � bethesetof fault
scenariosfor which A is to befault tolerant.Thedefinition
saysthataddingfaultscenariosin � will notenlargetheset
of behaviors. This is equivalentto the following statement
in ournotation:

���� &'� (*),+����%)-+.�0/1) � �2+3�
This saysthat from any given possiblehistory that is also
a fault scenarioin � , we canconstructa secondpossible
history simply by removing all fault eventsfrom the first.
This definitionof simplefault tolerancecanbeaugmented
in variousways.

2.2.2 Example: File System

As anexample,considera fault-tolerantfile system.An ex-
ternaluseror otherclient of the file systeminteractswith
it throughoperationssuchas“read-file”, “write-file”, and
soon. Theseoperations,alongwith any of their associated
parametersand return values,will be taken as the events
from which systemhistoriesare constructed.Certainob-
servablebehaviors, or traces,are expected,e.g., if a user
writes a file andthenreadsthe samefile, the contentsre-
turnedshouldbe the sameasthe contentswritten. So the
history �*4��5� write-file ‘contents’, read-file‘contents’ �
shouldbea trace,while thehistory �768�9� write-file ‘con-
tents’,read-file‘garbage’ � where‘contents’and‘garbage’
aredifferent,shouldnot be.

Fault eventsin the hardwaresupportingthe file system
maymakevariousbizarrebehaviorspossible.For example,
if thesequence�7:8�9� write-file ‘contents’,fault, read-file
‘garbage’� is atrace,thenthesystemmayappearasthough
it hadactuallyexecutedthe illegal history � 6 . If, however,
the file systemis to be fault tolerantwith respectto fault
scenariosincluding � 6 , then our property(FT1) demands
that � : won’t exist if �;6 doesn’t.

Why isn’t property(FT1)equivalentto requiringthatthe
file systemwork correctly? In fact, (FT1) is weaker. Sup-
pose,for somereason,that wheneachfile is written, the
file systemaltersthecontentswith somearbitraryfunction<�=?>

; whena file is read,thealteredcontentsarereturned.
Thetracesof this new file system,if it is fault tolerant,will
include:� write-file ‘contents’,read-fileMod(‘contents’) �
� write-file ‘contents’,fault, read-fileMod(‘contents’) �

and possiblymany others. Like our previous file system
thatdid notalterthecontentof files, thisonesatisfies(FT1)
becausethe alterationsare madeto files regardlessof the
presenceof a fault. But, if we have specifieda file system
thatdoesnot modify the contentof files, this implementa-
tion is incorrecteventhoughit is fault tolerant.

2.3 Analogy with Multi-Le vel Security

Property(FT1) is oftencalleda“non-interference”prop-
erty. Non-interferencepropertieshave beenexplored and
usedextensively in thecontext of multi-level computerse-
curity (MLS) [3] [5] [6] [8]. It is reasonableto ask, then,
what is therelationbetweenfault toleranceandmulti-level
security?We begin with a brief descriptionof MLS.

In a securecomputersystem,it is desirableto prevent
sensitive informationfrom flowing to userswhoarenot au-
thorizedaccessto it. In military systems,the sensitivity
of informationand the authorizationof userscanboth be
labeledby a partially-orderedsetof levels. Highly sensi-
tive informationis broughtinto thesystemby theinputsof
systemuserswho have high levels of authorization. The
multi-level securityproblemis the preventionof informa-
tion transferfrom thosehigh-level inputsto outputsthatcan
beseenby userswho arenot sohighly authorized.

Thekey to definingsecurityin this way is thedefinition
of “information flow”. We supposethat thesystem’s traces
areknown. Onedefinition of informationflow is thenthe
ability of a particularuserto usethe observedbehavior of
the system,plus knowledgeof its traces,to make deduc-
tionsaboutits unseenbehavior. Informationwill flow from
unseeninputsto observedbehavior if morecanbededuced
aboutthoseinputs than could be deducedif the system’s
behavior werenotobserved.

Non-interferencecan be taken (loosely) to meanthat
high-level inputsdo not interferewith or influenceprocess-
ing, andhenceoutputs,on lower levels. Statedmorepre-
cisely, theexistenceof high-level inputscannotbededuced
from observingaparticularhistoryof lower-level inputsand
outputs.

An analogybetweenfault toleranceandmulti-level se-
curity propertiescan now be drawn. A non-interference
propertyfor multi-level securitycanbeconvertedto a non-
interferencepropertyfor fault toleranceby translatingfrom
“highly sensitive” inputs to “f ault events”, andfrom “less
sensitive inputsandoutputs”to “non-fault events”,i.e., or-
dinary systembehavior. A fault event is thus considered
a type of input, althoughnot from any user. The non-
interferencepropertyfor MLS canthenbe translatedinto
thelanguageof fault tolerance:theexistenceof faultevents
cannotbededucedfrom particularhistoriesof ordinarysys-
tembehavior. This is theproperty(FT1).

Theanalogycanbeposedin anotherway if weconsider
thework of Biba [1] in extendingMLS to handlesomeas-
pectsof informationintegrity. His work addedintegrity lev-
els to thesecuritylevelsalreadyusedfor markingthesen-
sitivity of informationandtheauthorizationsof users.The
Bibaintegrity property, in effect,allowsinformationto flow
only from inputsto outputsof the sameor lower integrity
level. Given this property, high-integrity userswould be



prohibitedfrom deducing(andhencefrom beingcorrupted
by) informationaboutinputsat lower integrity levels. The
analogybetweenfault toleranceandMLS canbe recastin
termsof integrity, in which casea fault event is seento be
analogousto an input of low integrity level. This becomes
an appropriateanalogyif we considerthat fault eventsare
notusuallya high-integrity sourceof information.

The analogy we have constructed, between fault-
tolerancepropertieson one handand multi-level security
propertieson the other, is not perfectandbreaksdown in
severalways:

@ Unlike the inputs from users,which are the ultimate
sourceof informationin MLS systems,faulteventsare
usuallynot externalandnot observable.

@ Systemsarenever, in practice,tolerantto all fault sce-
narios:somepossiblesequenceof faultswill causethe
systemto fail. This differs from theanalogousmulti-
level securitycase,in which onedesiresto build sys-
temsthataresecureunderall possiblehistoriesof sen-
sitive inputs. Usersof an insecuresystemmay con-
spireto transmitinformationby concoctingunusualor
unlikely sequencesof inputs;fault eventsareassumed
not to do this.

Becausefault-tolerancenon-interferencepropertiesand
MLS non-interferencepropertiesareformally similar, can
thesamekindsof implementationmechanismsbeusedfor
both? The differenceslisted above indicatewhy this will
not work. Faultsarenot externalevents,andthereforeit is
notpossiblefor asystemto decide,without furtherprocess-
ing, whetherthey arefault eventsor not. A fault-detection
mechanismmaybeneeded.In securesystems,however, in-
putsareassociatedwith the authorizationlevel of the user
who causesthem. Thedifferencein brief: faultsdon’t log
in! Thus,eventhoughthereis a formal similarity between
fault toleranceandMLS properties,thedesignsusedto im-
plementthemwill bedifferent.

While fault toleranceand MLS needdifferent designs
andimplementations,themethodsusedto verify an imple-
mentationeitherfault tolerantor secureshouldbe similar.
Seesection3.

2.4 Graceful Degradation

Theproblemof specifyinggracefuldegradationof asys-
tem’s servicein responseto faultswill have muchin com-
mon with the previous discussionof specifyingfault tol-
erance. We expect that many systemswill be fault toler-
ant for somefault scenarios,gracefullydegradefor others,
andbe chaoticfor the rest. As a result,specificationsfor
gracefuldegradationmay be merelymodificationsor gen-
eralizationswhichweakenthosewehavealreadydiscussed

for purefault tolerance.In fact, the specificationswe will
arrive at in this sectioncanbeseensimply asa morecom-
prehensiveway to definefault toleranceitself.

2.4.1 Limited Interfer ence

If fault toleranceis to be expressedas a non-interference
property, asdiscussedin section2.2, thengracefuldegra-
dationmay be expressibleassomelimited interferenceof
faultswith externalbehavior. A specificationof limited in-
terferenceshouldbe a generalizationof a specificationfor
non-interference.The form of the specificationmust then
show thewayin whichinterferenceof faulteventswith nor-
malbehavior is limited.

When we developedproperty (FT1), we requiredthat
systembehavior with andwithout faultsbe identical. This
preventsan observer from deducingthat any faults have
occurred. Unlike the MLS case,though,it may not be a
problemthatonecandeducetheexistenceof faults,solong
asthesystembehavior in responseto thosefaultsis “good
enough”.Thus,weneednotdemandthatbehaviorsbeiden-
tical, but only that they beacceptablyequivalent. If A and
) arebehaviors (sequencesin which no fault eventsoccur)
thenlet ACBD) meanthat thetwo behaviors areacceptably
similar. Therelation’ B ’, calledthetolerancerelation, will
beanequivalencerelationonbehaviors.

Adding fault scenariosto a systemsatisfying(FT1) will
not enlarge the set of behaviors. We now want a second
property, (FT2), suchthat addingfault scenarioswill not
enlargethesetof possibleequivalenceclassesof behaviors,
wherea “possibleequivalenceclass”is onethatcontainsat
leastonepossiblebehavior. Repeatingtheanalysisthat led
to (FT1)but demandingonly equivalentinsteadof identical
behavior, wefind that

�����FEG� (H)-+3�I��)-+.�0/JLK +���� K �M�D�#��ONLP > K BQ) � �
is the generalizedfault tolerance,or gracefuldegradation,
propertythat results.This propertysays:for any fault sce-
nario,we mustbeableto find analternatepossiblehistory
that is fault-freeandis acceptablyequivalent. If, for some
reason,anobserver of thesystemcouldnot distinguishthe
behavior

K
from ) � � , then,justasfor (FT1), theexistence

of faultscouldnot bededuced.
As anexample,considerasystemthatmustperformtwo

tasks, ! and R . Supposethat fail-stopprocessors!�4 and
! 6 arededicatedto simultaneousexecutionof task ! , while
fail-stopprocessorsR 4 and R 6 arededicatedto task R . Ig-
noring the amountsof time neededfor processorsto com-
parefinal results,thissystemwill beperfectlyfault tolerant
(FT1) for a fault scenarioin which processors! 4 and R 4
fail: bothtaskswill complete,andthey will completein the
sameamountof timethey wouldhavetakenif no faultshad



occurred.However, it will not be fault tolerantfor a fault
scenarioin which processor!�6 fails in additionto !F4 and
R 4 . In this case,processingof task ! is interrupted,and
will not becompletedunlessthesystemusesprocessorR 6
to finish task ! , andeventhentask ! will notbefinishedin
thesameamountof timeasin a fault-freescenario.

For this example,we would like “gracefuldegradation”
to meanthat for any fault scenarioin which threeor fewer
processorsfail, both tasks ! and R will eventually com-
plete. To implementthis specificationwill requirethesys-
temto reconfigurein somefault scenarios:interruptedpro-
cessingof task ! will needto becontinuedor restartedona
processororiginally dedicatedto task R , or viceversa.The
processingpower of the systemwill thenbedegraded,be-
causea singleprocessorwill take longerto completeboth
tasksthaneitheroneseparately, but the responseto faults
will begracefulbecauseat leastbothtaskswill befinished.
To describethis type of graceful degradation,we would
choosea tolerancerelation that ignorestiming: two his-
toriesareequivalent if they involve the samesequenceof
events,but at possiblydifferenttimes.

Notethat(FT2) reducesto (FT1) in thecasethatthetol-
erancerelationis equality. It is thechoiceof tolerancerela-
tion thatdetermineshow faultsinterferewith behavior, and
thereforethe meaningof “graceful degradation”. As one
chooseslargersetsof fault scenarios,� , thetolerancerela-
tion mustbechosento treatmorebehaviorsasequivalent.

This form of limited interferencecanbeviewedin terms
of theanalogywith multi-level security. Systemsthatmeet
(FT2)but not(FT1)areanalogousto systemsthatleaksome
informationfrom highsecuritylevelsto lowerones,andare
thusnot perfectlysecure.

3 Verification of Fault Tolerance

We have arguedthatnon-interferencespecificationscan
be usedto capturethe intuitive notion of fault tolerance.
How canasystembeverified,in practice,to implementthis
sortof specification?

Oncetheconstructsof “event” and“trace” arerelatedto
featuresof the implementation,onemight appealdirectly
to the definition in constructinga proof. However, for all
but the simplestsystem,this approachbecomesvery com-
plicated.

Many of existing verification tools [7][4] provide little
helpeither. Typically, thesetoolsaredesignedfor proof of
invariants,or moregenerally, of embeddedassertions: con-
ditionsthatholdataparticularpoint in anexecutionhistory.
Unfortunately, anembeddedassertionexpressesacondition
that appliesto eachhistory independently, whereasa non-
interferencespecificationappliesto the entiresetof possi-
blehistoriesatonce.Thehelpprovidedby thesetoolsis not
sufficient.

Becausefault-tolerancespecificationsareformally simi-
lar to specificationsfor multi-level security, thissameprob-
lem arisesin theverificationof MLS. In thatdomain,spe-
cializedtechniquescanbeappliedto analyzespecialcases.
For example,the techniqueof [10] is onein which theex-
istenceof sometracesis shown by modifying othertraces
in appropriateways. Demonstratingthe existenceof one
trace,givenanothertrace,is exactly whatis neededin both
(FT1) and(FT2), andthis techniqueis in factonethatcan
be appliedeither to designsin the MLS or fault-tolerance
domains.

References

[1] K. Biba. Integrity considerationsfor securecomputersys-
tems.TechnicalReportMTR-3153,MITRE Corp.,Bedford,
MA, Apr. 1977.

[2] S.Brookes,C. Hoare,andA. Roscoe.A theoryof commu-
nicatingsequentialprocesses.J. ACM, 31(3),1984.

[3] J. Goguenand J. Meseguer. Securitypolicy and security
models.In IEEE Symp.SecurityandPrivacy, 1982.

[4] D. Goodet al. Reporton theGypsylanguage,version2.0.
TechnicalReport ICSCA-CMP-10, Institute of Computer
Science,Univ. of Texas,Austin,Sept.1978.

[5] J.Haighetal. An experienceusingtwo covert channelanal-
ysistechniqueson a realsystemdesign.In IEEE Symp.Se-
curity andPrivacy, 1986.

[6] D. McCullough. Specificationsfor multi-level securityand
a hook-upproperty. In IEEE Symp.Securityand Privacy,
1987.

[7] B. Silverberg et al. TheHDM handbook,volumeii. Tech-
nical ReportDeliverableA006, project 4828, SRI, Menlo
Park,CA, June1979.

[8] S.T. Vinter, D. Weber, et al. A securedistributedoperating
system.In IEEESymp.SecurityandPrivacy, 1988.

[9] D. Weber. Specificationsfor fault tolerance.TechnicalRe-
port 19-3,ORA Corp.,Jan.1988.

[10] D. Weberand B. Lubarsky. The SDOSproject – verify-
ing hook-upsecurity. In Comp.SecurityApplicationsConf.,
pages7–15,1987.

[11] J. Wensley et al. SIFT: Design and analysisof a fault-
tolerantcomputerfor aircraft control. Proc. IEEE, 66(10),
Oct.1978.


